\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\) [415]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 138 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {14 a^3 \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d} \]

[Out]

2*a^(5/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+14/3*a^3*sin(
d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+2/3*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4349, 3898, 4100, 3886, 221} \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 a^{5/2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {14 a^3 \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {2 a^2 \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}{3 d} \]

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*a^(5/2)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d +
 (14*a^3*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (2*a^2*Sqrt[Cos[c + d*x]]*Sqrt[a +
a*Sec[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3898

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[a/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d,
 e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && (LtQ[n, -1] || (EqQ[m, 3/2] && EqQ[n, -2^(-1)])) && IntegerQ[2
*m]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{3} \left (2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {7 a}{2}+\frac {3}{2} a \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {14 a^3 \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\left (a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {14 a^3 \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}-\frac {\left (2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {2 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {14 a^3 \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.67 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 a^3 \left ((8+\cos (c+d x)) \sqrt {1-\sec (c+d x)}+3 \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}\right ) \sin (c+d x)}{3 d \sqrt {-1+\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*a^3*((8 + Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]] + 3*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + d*x]])*Sin[c
 + d*x])/(3*d*Sqrt[-1 + Cos[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(305\) vs. \(2(116)=232\).

Time = 2.11 (sec) , antiderivative size = 306, normalized size of antiderivative = 2.22

method result size
default \(\frac {a^{2} \left (3 \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+3 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+3 \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+3 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+2 \cos \left (d x +c \right ) \sin \left (d x +c \right )+16 \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\cos \left (d x +c \right )}}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(306\)

[In]

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/3/d*a^2*(3*arctan(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1
))^(1/2)*cos(d*x+c)+3*(-1/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d
*x+c)+1))^(1/2))*cos(d*x+c)+3*arctan(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*
(-1/(cos(d*x+c)+1))^(1/2)+3*(-1/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/
(cos(d*x+c)+1))^(1/2))+2*cos(d*x+c)*sin(d*x+c)+16*sin(d*x+c))*(a*(1+sec(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)/(cos(d
*x+c)+1)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 339, normalized size of antiderivative = 2.46 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\left [\frac {4 \, {\left (a^{2} \cos \left (d x + c\right ) + 8 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{6 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {2 \, {\left (a^{2} \cos \left (d x + c\right ) + 8 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{3 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/6*(4*(a^2*cos(d*x + c) + 8*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 3
*(a^2*cos(d*x + c) + a^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(c
os(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)
))/(d*cos(d*x + c) + d), 1/3*(2*(a^2*cos(d*x + c) + 8*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*
x + c))*sin(d*x + c) + 3*(a^2*cos(d*x + c) + a^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c) + d)]

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 593 vs. \(2 (116) = 232\).

Time = 0.40 (sec) , antiderivative size = 593, normalized size of antiderivative = 4.30 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/12*sqrt(2)*(30*a^2*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(3/2*d*x + 3/2*c) - 30*a^
2*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 3*sqrt(2)*a^2*log(2*cos(
1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d
*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*a
rctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 3*sqrt(2)*a^2*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3
/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)
*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c)
, cos(3/2*d*x + 3/2*c))) + 2) + 3*sqrt(2)*a^2*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)
))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) +
2) - 3*sqrt(2)*a^2*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(si
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 4*a^2*sin(3/2*d*x + 3/
2*c) + 30*a^2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*sqrt(a)/d

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int {\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

[In]

int(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(5/2), x)